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An approximate analytical solution is obtained for the problem of heat transfer dur- 
ing the laminar flow of a viscoelastoplastic medium in a circular tube disregarding 
the energy dissipation. 

The investigation of heat transfer during the flow of a viscoelastoplastic medina in a 
circular tube is of great practical interest, since such flow occurs in heat-transfer equip- 
ment and in transfer along the tubes of crosslinked dispersion systems. 

The heat transfer during the flow of a viscoplastic medium described by the Shvedov-- 
Bingham equation is investigated in [I]. Trusov and Tyahin [2] found that the lamina~ flow 
of an elastically compressible viscoplastic medium is described By the rheological equation 
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The flow of a viscoelastoplastic medium in a circular tube breaks up into two zones: 
a zone of flow with constant velocity (elastic core of radius ro) and a zone of gradient flow 
adjacent to the tube walls (Fig. i). The distribution law of the flow velocity has the form 
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where ro = 2eZ/Ap. We shall investigate the heat-transfer problem under the following as- 
sumptions: theflow of the mediumand theheat transfer become stabilized;the thermophysical charac- 
teristics of the medium are independent of the temperature; the temperature of the medium at 
the entrance to the heated section To and the temperature of the tube wall T w are con~;tant 
and To ~ Tw; there are no heat sources in the flow, the amount of heat appearing due to 
dissipation is negligibly small, and the heat flux along the z axis is insignificant r 
to thatalong the radius of the tube. Under these assumptions, the energy equation is of th~form 

V(r) OT-- a 0 (rOT) ( i )  

The boundary conditions are 

T(O, r ) = T  o , T(z, R ) = T  w, aT (z, O) _ O. (2) 
Or 

The additional boundary conditions are determined by the coupling condition at the boundary 

of the elastic core: T(z, ro)=T(z, r+o), aT(z, r~) _ aT(z, r +) 
ar  - -  Or - "  

By separation of variables, the boundary-value problem (i)~ (2) reduces to the S~urm-- 
Liouville problem 

r (y) + _I r (y) + c2 f (y) ~ (y) = 0, (3) 
Y 
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Change in the flow velocity of the medium over the cross section of the 

Change in the local Nusselt number along the length of the tube. 

�9 ' (0) = @(1) = 0 (4) 

with the additional condition 

(y~) = �9 (y$), ~' (y~) = o"(y~). 
In Eq. (3), f(y) denotes the dimensionless velocity of the medium and is given by the formu- 
la 

1, O ~ y ~ y  o, ] 

- ~ o  ( 1 - - y 2 ) + l n y  , Yo<Y~I, 

where 

F0 = 1 2y~ (1 - -  y~) @ In Yo. 

We shall construct an asymptotic solution of problem (3), (4) by the method discussed in 
[I, 3, 4]. We thus obtain the following formulas: 
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enabling us to obtain an infinite set of eigenvalues and eigenfunctions of problem (3), (4), 
which is of great significance for computing the heat transfer in viscoelastoplastic media 
for small reduced lengths of the tubes. 

The temperature distribution of the medium in the tube has the form 
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TABLE i. 
lem Computed for Y'o = 0.5 

n c~ 

0 2,35927[ 
1 5,89816! 
2 9,437061 
3 12,97596 
4 16,51486 

Eigenvalues and Constants in the Heat-Transfer Prob- 

S~  

0929431 
0,034695 
0,011588 
0,005512 
0,003140 

( - - | ) n + L .  

. ~ 2 ( 1 )  

,04500 
,41828 
,65883 
,84460 
,99901 

(--1)ndn 

1,56760 
0,85103 
0,6221o 
o,5o31i 
0,42839 

5 
6 
7 
8 
9 

10 

c n ( - - l ) n d n  

20,05376 0,3%38 
23,59265 t 0,33773 
27,13155 1 0,30768 
30,67045[ 0,28354 
34,209351 0,26363 
37,74825! 0,24688 

Sn 

0,001996 
0,001366 
O, 000986 
O, 000741 
0,000574 
O, 000456 

(__1) n + l -  

2,13266 
2,25138 
2,35875 
2,45714 
2,54823 
2,63323 
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where 

202l VoR 
Pe = 
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The d n are determined from the boundary condition at the entrance to the heated segment. Af- 
ter some simple manipulations, we obtain 

l 2 

d,~ = ( - -  I)~2.28007~7~-~c~ -~" (6)  

We write the change in the dimensionless mean mass temperature along the length of the tube 
in the form 

1 S~ exp -- - .  , 
Oep = 1 Pe 

.f Y: (Y) dy .=o 
0 

where 

S,~ = - -  d,,c~-2q)~ (I), (7) 

I 1 

(D~(1) = ( 1)~+~0.725721~ 3 c S. (8)  

We compute the change in the local Nusselt number along the length of the tube from the for- 
mula (Fig. 2) 

N u - -  2 d,~q)~(1)exp - -  Pe d 
Om n=o 

The limiting Nusselt number is 

I 

Nuo = 2d y: (y) dy. 
0 

The values of Cn, dn, Sn, and r computed for Yo ~ 0,5 from formulas (5)-(8) on an M-220 
computer, are given in Table i. 

NOTATION 

a, thermal diffusivity; Cn, eige~values; R, tube radius; d = 2R; T, temperature of the 
medium; To, input temperature; Tw, wall temperature; V(r), velocity; y = r/R, dimensionless 

721 



radial coordinate; Yo, dimensionless radius of the elastic core; Ap/l, pressure drop along 
the length of the tube; n, dynamic viscosity coefficient; e, limiting shear stress; r, tan- 
gential stress; ~ = (T-- Tw)/(To -- Tw) , dimensionless temperature; ~(y), eigenfunctions; 
Pc, Peclet number; Jo(Y), J~/3(y), Bessel functions. 
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HEAT TRANSFER IN GENERALIZED COUETTE FLOW OF A NONLINEAR 

VISCOPLASTIC FLUID 

Z. P. Shul'man and V. F. Volchenok UDC 536.242:532.135 

The steady-state heat-transfer problem is solved for dissipative pressure flow of a 
nonlinear viscoplasti c fluid between two parallel isothermal plates, one of which is 
moving at a constant velocity while the other iS stationary. 

Let us consider steady-state stabilized flow of a nonlinear viscoplastic fluid between 
two parallel infinite plates. The upper plate is moving in its own plane at a constant ve- 
locity U in the direction of the axis 0 x. A constant pressure gradient grad p = A is pres- 
ent in the gap. The gradient can be of mechanical or other origin, such as a magnetic field 
moving along the channel axis and acting on a ferromagnetic suspension. ~ The orientation of 
the velocity vector U can coincide with the direction of A or be opposite to it. This model 
of generalized Couette flow is valid, for example, for the description of fluid flow in the 
screw Channels of an extruder. We consider the properties of the medium to be independent 
of the temperature. Constant temperatures are maintained on the plates: T(~) on the lower 

and T(z) on the up~ 

It has been shown [2] that three fully developed flow regimes are possible, depending 
on the rheological properties of the fluid, the magnitude and direction of the pressure 
gradient, and the velocity of the upper plate: i) flow with a quasisolid zone (core) inside 
the main flow; 2) flow with the core adjacent to one of the plates; 3) flow without any core 
in the gap. 

Accordingly, the equations of motion and thermal energy transport must be solved sep- 
arately for the different zones and then matched at the interfaces (Fig. I). Allowance must 
be made for the fact that dissipation of mechanical into heat energy takes place only in 
zones I and II, while in zone III the thermal conduction law for solids is realized. 

To describe the rheological behavior of the fluid we use the generalized model [i] 

1 I i 

n = ~f + (~p~)m (l) 

with rheological parameters m, n, and Np (all real numbers). 

Umder the given initial assumptions, the problem is stated in the form 

0= -- --aP -F __a~, (2) 
ax dy 
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